Artificial intelligence is revolutionizing the healthcare industry in unprecedented ways. From accurate diagnostics and personalized treatment plans to drug discovery and administrative streamlining, AI’s potential to transform patient care is undeniable. As technology continues to advance, collaboration between healthcare professionals, researchers, and AI experts will play a crucial role in harnessing the full potential of AI to improve patient outcomes, enhance clinical workflows, and pave the way for a healthier future.
How AI Is Revolutionizing Healthcare
Artificial intelligence (AI), or intelligence demonstrated by machines, is heavily influencing many industries. AI applications in healthcare can literally change patients’ lives, improving diagnostics and treatment and helping patients and the healthcare provider make informed medical decisions quickly. AI in the global healthcare market (the total value of products and services sold) was valued at $2.4 billion in 2019 and is projected to reach $31.02 billion in 2025.
Now in the COVID-19 pandemic, AI is being leveraged to identify virus-related misinformation on social media and remove. AI is also helping scientists expedite vaccine development, track the virus, and understand individual and population risk, among other applications. ((Stoner, Kayla. “AI speeds up search for COVID-19 treatments and vaccines.” Northwestern University. May 4, 2020. https://news.northwestern.edu/stories/2020/05/ai-tool-speeds-up-search-for-covid-19-treatments-and-vaccines/. Accessed: January 26, 2022)) ((Walker, Sachin. “Tracking COVID-19: Hunting the Virus with Technology, AI, and Analytics.” Stanford University. April 2, 2020. https://hai.stanford.edu/news/tracking-covid-19-hunting-virus-technology-ai-and-analytics. Accessed: January 26, 2022)) Companies such as Microsoft, which recently stated it will dedicate $20 million to advance the use of artificial intelligence in COVID-19 research, recognize the need for and extraordinary potential of AI in healthcare.
The ultimate goal of AI in healthcare is to improve patient outcomes by revolutionizing treatment techniques. By analyzing complex medical data and drawing conclusions without direct human input, AI technology can help researchers make new discoveries. ((Davenport, Thomas and Ravi Kalakota. “The potential for artificial intelligence in healthcare.” Future Healthcare Journal 6, no. 2 (2019): 94–98. doi: 10.7861/futurehosp.6-2-94. ))
Various subtypes of AI are used in healthcare. Natural language processing (NLP) algorithms give machines the ability to understand and interpret human language. Machine learning (ML) algorithms teach computers to find patterns and make predictions based on massive amounts of complex data.
AI applications are already playing a huge role in healthcare, and its potential future applications are game-changing. Below, we’ve outlined four distinct ways that AI is transforming the healthcare industry.
4 Ways AI Is Transforming Healthcare
This transformative technology has the ability to improve diagnostics, advance treatment options, boost patient adherence and engagement, and support administrative and operational efficiency.
1. Improving Diagnostics
AI technology can help healthcare professionals diagnose patients by analyzing symptoms, suggesting personalized treatments, and predicting risk. It can also detect abnormal results.
Analyzing Symptoms, Suggesting Personalized Treatments, and Predicting Risk
Many healthcare providers and health care organizations are already using intelligent symptom checkers. This machine learning technology asks patients a series of questions about their symptoms and, based on their answers, informs them of appropriate next steps for seeking care. Buoy Health offers a web-based, AI-powered health assistant that healthcare organizations are using to triage patients who have symptoms of COVID-19. It offers personalized information and recommendations based on the latest guidance from the Centers for Disease Control and Prevention (CDC).
Additionally, AI technology can take precision medicine—healthcare tailored to the individual—to the next level by synthesizing information and drawing conclusions, allowing for more informed and personalized treatment. Deep learning models have the ability to analyze massive amounts of data, including information about a patient’s genetic content, other molecular/cellular analysis, and lifestyle factors—and find relevant research that can help doctors select treatments.
Healthcare AI can also be used to develop algorithms that make individual and population health risk predictions in order to help improve patient outcomes. ((Bresnick, Jennifer. “Top 12 Ways Artificial Intelligence Will Impact Healthcare.” Health IT Analytics. April 30, 2018. https://healthitanalytics.com/news/top-12-ways-artificial-intelligence-will-impact-healthcare. Accessed: January 26, 2022)) At the University of Pennsylvania, doctors used a machine learning algorithm that can monitor hundreds of key variables in real time to anticipate sepsis or septic shock in patients 12 hours before onset.
Detecting Disease
Imaging tools can advance the diagnostic process for clinicians. The San Francisco–based company Enlitic develops deep learning medical tools to improve radiology diagnoses by analyzing medical data. These tools allow clinicians to better understand and define the aggressiveness of cancers. In some cases, these tools can replace the need for tissue samples with “virtual biopsies,” which would aid clinicians in identifying the phenotypes and genetic properties of tumors.
These imaging tools have also been shown to make more accurate conclusions than clinicians. A 2017 study published in JAMA found that of 32 deep learning algorithms, 7 were able to diagnose lymph node metastases in women with breast cancer more accurately than a panel of 11 pathologists.
Smartphones and other portable devices may also become powerful diagnostic tools that could benefit the areas of dermatology and ophthalmology. The use of medical AI in dermatology focuses on analyzing and classifying images and the ability to differentiate between benign and malignant skin lesions. Using smartphones to collect and share images could widen the capabilities of telehealth. In ophthalmology, the medical device company Remidio has been able to detect diabetic retinopathy using a smartphone-based fundus camera, a low-power microscope with an attached camera.
2. Advancing Treatment
Medical AI is becoming a valuable tool for treating patients. Brain-computer interfaces could help restore the ability to speak and move in patients who have lost these abilities. This technology could also improve the quality of life for patients with ALS, strokes, or spinal cord injuries.
There is potential for machine learning algorithms to advance the use of immunotherapy, which currently only 20% of patients respond to. New technology may be able to determine new options for targeting therapies to an individual’s unique genetic makeup. Companies like BioXcel Therapeutics are working to develop new therapies using AI tools and machine learning.
Additionally, clinical decision support systems (CDSSs) can help assist healthcare professions to make better medical decisions by analyzing past, current, and new patient data. IBM offers clinical support tools to help a healthcare provider make a more informed and evidence-based clinical decision.
Finally, AI has the potential to expedite drug development by reducing the time and cost for discovery. AI tools support data-driven decision making, helping researchers understand what compounds should be further explored.
3. Boosting Patient Engagement and Adherence
Wearables and personalized medical devices, such as smartwatches and activity trackers, can help patients and clinicians monitor health. They can also contribute to research on population health factors by collecting and analyzing data about individuals.
These devices can also be useful in helping patients adhere to treatment recommendations. Patient adherence to treatment plans can be a factor in determining outcome. When patients are noncompliant and fail to adjust their behaviors or take prescribed drugs as recommended, the care plan can fail. The ability of AI to personalize treatment could help patients stay more involved and engaged in their care. AI tools can be used to send patients alerts or content intended to provoke action. Companies like Livongo are working to give users personalized “health nudges” through notifications that promote decisions supporting both mental and physical health.
AI can be used to create a patient self-service model—an online portal accessible by portable devices—that is more convenient and offers more choice. A self-service model helps providers reduce costs and helps consumers access the care they need in an efficient way.
4. Supporting Administrative and Operational Workflow
AI can improve administrative and operational workflow in the healthcare system by automating some of the processes. Recording notes and reviewing medical records in electronic health records takes up 34% to 55% of physicians’ time, making it one of the leading causes of lost productivity for physicians. Clinical documentation tools that use natural language processing can help reduce the time providers spend on documentation time for clinicians and give them more time to focus on delivering top-quality care.
Health insurance companies can also benefit from AI technology. The current process of evaluating claims is quite time-consuming, since 80% of healthcare claims are flagged by insurers as incorrect or fraudulent. Natural language processing tools can help insurers detect issues in seconds, rather than days or months.
Sources:
Intel Newsroom. “U.S. Healthcare Leaders Expect Widespread Adoption of Artificial Intelligence by 2023.” July 2, 2018. https://newsroom.intel.com/news-releases/u-s-healthcare-leaders-expect-widespread-adoption-artificial-intelligence-2023/#gs.mgou6a. Accessed: January 26, 2022
John Hopkins Medicine. “Study Suggests Medical Errors Now Third Leading Cause of Death in the U.S.” May 3, 2016. https://www.hopkinsmedicine.org/news/media/releases/study_suggests_medical_errors_now_third_leading_cause_of_death_in_the_us. Accessed: January 26, 2022
Keith, Loria. “Putting the AI in Radiology.” Radiology Today, https://www.radiologytoday.net/archive/rt0118p10.shtml. Accessed: January 26, 2022
Market Data Forecast. “AI in Healthcare Market.” April 2021. https://www.marketdataforecast.com/market-reports/artificial-intelligence-in-healthcare-market. Accessed: January 26, 2022
Neiman, Andrea B., PhD, Todd Ruppar, PhD, Michael Ho, MD, PhD, Larry Garber, MD, Paul J. Weidle, PharmD, Yuling Hong, MD, PhD, Mary G. George, MD, and Phoebe G. Thorpe, MD. “CDC Grand Rounds: Improving Medication Adherence for Chronic Disease Management — Innovations and Opportunities.” CDC. November 17, 2017. https://www.cdc.gov/mmwr/volumes/66/wr/mm6645a2.htm. Accessed: January 26, 2022
Sogani, Julie, Bibb Allen Jr, Keith Dreyer, and Geraldine McGinty. “Artificial intelligence in radiology: the ecosystem essential to improving patient care.” Clinical Imaging 59, no. 1 (January 2020): A3–A6. https://doi.org/10.1016/j.clinimag.2019.08.001. Accessed: January 26, 2022
ARE YOU INSPIRED?
There could be an article about you here one day. Take charge of your own life-story!